Modelling framework

hydromad()

Specify rainfall - runoff (hydrology) models.

fitted(<hydromad>) residuals(<hydromad>) observed(<hydromad>) vcov(<hydromad>) logLik(<hydromad>) deviance(<hydromad>) print(<hydromad>) str(<hydromad.runlist>) isValidModel()

Standard methods for Hydromad model objects

predict(<hydromad>)

Generate simulated time series from Hydromad model objects

simulate(<hydromad>)

Simulate hydromad models by parameter sampling.

runlist() as.runlist() c(<hydromad>) c(<runlist>) coef(<runlist>) summary(<runlist>) print(<runlist>) residuals(<runlist>) fitted(<runlist>) update(<runlist>) isValidModel(<runlist>)

Work with a set of model runs

hydromad.options() hydromad.getOption()

User default settings for hydromad

Assessment

summary(<hydromad>)

Assess and summarise performance of Hydromad models

hydromad.stats() buildCachedObjectiveFun() hmadstat()

Statistics for use in hydromad

nseStat()

Generalisation of Nash-Sutcliffe Efficiency (R Squared)

nseVarTd()

Time-delay corrected performance measure

plot(<hydromad>) xyplot(<hydromad>) xyplot(<hydromad.runlist>) qqmath(<hydromad>) tsdiag(<hydromad>)

Plot methods for Hydromad model objects

xyplot(<runlist>) qqmath(<runlist>)

Plot results from a set of model runs

Calibration

buildTsObjective() buildTsLikelihood()

Generate objective functions with aggregation, transformation and a reference model

objFunVal()

Calculate objective function value for a fitted model.

fitBySampling()

Fit a hydromad model by sampling the parameter space.

fitByOptim()

Fit a hydromad model using general optimisation algorithms.

fitBySCE()

Fit a hydromad model using the SCE (Shuffled Complex Evolution) algorithm.

fitByDE()

Fit a hydromad model using the DE (Differential Evolution) algorithm.

fitByDream()

Fit a hydromad model using the DREAM (DiffeRential Evolution Adaptive Metropolis) algorithm.

fitByCMAES()

Fit a hydromad model using CMA-ES (Covariance matrix adapting evolutionary strategy) from cmaes package

fitByDDS()

Fit a hydromad model using DDS (Dynamically Dimensioned Search) algorithm.

fitByNsga2()

Fit a hydromad model using the NSGA2 genetic algorithm from the mco package

optimtrace()

Extract objective function value series from optimisation results

defineFeasibleSet()

Extract the feasible parameter sets meeting some criteria.

Discrete events

findThresh() eventseq() eventapply() eventinfo()

Identify discrete events from time series and apply functions to them.

event.xyplot()

Scatterplots with variables aggregated in event windows

event.xyplot(<hydromad>) event.xyplot(<hydromad.runlist>)

Visualise systematic model errors against covariates

Soil moisture accounting

gr4j.sim() gr4jrouting.sim()

GR4J rainfall runoff model

simhyd.sim() simhydrouting.sim()

SimHyd model

hbv.sim() hbvrouting.sim() hbv.ranges() hbvrouting.ranges()

HBV rainfall-runoff model

cmd.sim()

IHACRES Catchment Moisture Deficit (CMD) model

cwi.sim()

IHACRES Catchment Wetness Index (CWI) model

awbm.sim()

Australian Water Balance Model (AWBM)

bucket.sim()

Single-bucket Soil Moisture Accounting models

sacramento.sim()

Sacramento Soil Moisture Accounting model

snow.sim()

Simple degree day factor snow model

scalar.sim()

Simple constant runoff proportion

intensity.sim()

Runoff as rainfall to a power

runoffratio.sim()

Simple time-varying runoff proportion

Routing

gr4j.sim() gr4jrouting.sim()

GR4J rainfall runoff model

simhyd.sim() simhydrouting.sim()

SimHyd model

hbv.sim() hbvrouting.sim() hbv.ranges() hbvrouting.ranges()

HBV rainfall-runoff model

armax.sim() ssg.armax() normalise.armax()

ARMAX Transfer Function models

expuh.ls.fit()

Exponential components transfer function models

lambda.sim()

Transfer function with two exponential components and variable partitioning

powuh.sim()

Power law transfer function models

leakyExpStore.sim()

Exponential store with zero flows and thresholded loss

expuh3s.sim()

Exponential components transfer function models with layered slowflow stores

Routing fitting

armax.ls.fit()

Estimate transfer function models by Least Squares.

armax.sriv.fit()

Estimate transfer function models by Simple Refined Instrumental Variables method.

armax.inverse.fit()

Estimate transfer function models by Inverse Filtering.

armax.inverse.sim()

Invert transfer function models to estimate input series.

tryModelOrders()

Compare calibrations with different transfer function (ARMA) orders for routing.

estimateDelay()

Estimate the dead time between input and output

estimateDelayFrac()

Estimate the dead time between input and output, with a fractional component (redistribution of the input)

deconvolution.uh()

Unit Hydrograph using deconvolution

Utilities

convertFlow()

Convert between units of flow volume

rollccf() xyplot(<rollccf>) ccfForLags()

Rolling cross-correlation at given lags.

parameterSets()

Generate parameter sets

evalPars()

Evaluate a model for a matrix of parameters

rotatedSampling()

Sample within rotated feasible parameter space

gr4j.transformpar()

Transform GR4J parameters

observed() numericSummary()

Observed data values

SCEoptim()

Shuffled Complex Evolution (SCE) optimisation.

Datasets

BinghamTrib

Rainfall and streamflow for Bingham River Trib at Ernies Catchment.

Canning

Rainfall, streamflow and potential evaporation data for Canning River at Scenic Drive.

Cotter

Rainfall and streamflow for Cotter River at Gingera.

Corin

Daily dataset for the Corin catchment.

Murrindindi

Rainfall and streamflow for Murrindindi River at Murrindindi above Colwells.

Queanbeyan

Rainfall and streamflow for Queanbeyan River at Tinderry.

SalmonBrook

Rainfall and streamflow for Salmon Brook at Salmon Catchment.

Wye

Rainfall and streamflow for Wye at Cefn Brwyn.

HydroTestData

A simple simulated dataset for use in testing hydrological models.

Molonglo

Molonglo

Orroral

Orroral

YeAl97

Model performance statistics from Ye et al. 1997

absorbScale()

Placeholder title for absorbScale

cmd_unstable.sim()

Unstable/unoptimised version of IHACRES Catchment Moisture Deficit (CMD) model

crossValidate()

Cross-validation of hydromad model specification

dbm.sim()

Typical initial model used in Data-Based Mechanistic modelling.

eigen.plot()

Eigenplot

evalParsRollapply() evalParsTS()

Calculate an objective function on a rolling time series for a matrix of parameters

fdc.sample()

Title placeholder

filter_loss()

Recursive filter with a constant loss

filter_tv()

Recursive filter with time-varying coefficient

findUnivariateBounds()

Find univariate feasible bounds

fitDbmToPeaks()

Title

hydromad.parallel()

Support for parallelisation in hydromad

hydromad_sensitivity

Support for sensitivity analysis in hydromad

lagFrac()

Non-integer time delay

maexpuh.sim()

Smoothed exponential stores

panel.ribbon()

Plot the area between two series as a filled polygon.

paretoFilter()

Pareto filter

paretoObjectivesNsga2()

Multi-objective optimisation using NSGAII

paretoObjectivesVaryWeights()

Multi-objective optimisation by varying weights

paretoTimeAnalysis()

Analysis using Pareto-filtering of model performance across simulation periods

plotPCNSE()

Annotated parallel coordinates plot of model performance across periods

poweroid()

Poweroid geometry (cones, paraboloids, etc).

defaultPrefilters() makePrefilter()

Prefilter

runRSM() evalRSM() print(<summary.rsm.hydromad>)

Response Surface Method

splitData()

Split data of a model instance

swimp()

Simple Wetland Inundation Model using Poweroids

tellTS()

Time series sensitivity analysis

tfParsCheck()

tfUtils