Plot methods...
# S3 method for hydromad
plot(x, y, ...)
# S3 method for hydromad
xyplot(
x,
data = NULL,
...,
scales = list(),
feasible.bounds = FALSE,
col.bounds = "grey80",
border = "grey60",
alpha.bounds = 1,
all = FALSE,
superpose = TRUE,
with.P = FALSE,
type = "l",
type.P = c("h", if ("g" %in% type) "g"),
layout = c(1, NA)
)
# S3 method for hydromad.runlist
xyplot(
x,
data = NULL,
...,
scales = list(),
all = FALSE,
superpose = FALSE,
with.P = FALSE,
type = "l",
type.P = c("h", if ("g" %in% type) "g"),
layout = c(1, NA)
)
# S3 method for hydromad
qqmath(
x,
data = NULL,
...,
all = FALSE,
type = "l",
auto.key = list(lines = TRUE, points = FALSE),
f.value = ppoints(100),
tails.n = 100
)
# S3 method for hydromad
tsdiag(object, gof.lag, ...)an object of class hydromad.
Placeholder for plot.hydromad
further arguments passed on to xyplot.zoo or
qqmath.
ignored.
Placeholder
if TRUE, then ensemble simulation bounds are
extracted and plotted. This only works if a feasible set has been
specified using defineFeasibleSet or the update method.
Note that the meaning depends on what value of glue.quantiles was
specified to those methods: it might be the overall simulation bounds, or
some GLUE-like quantile values.
graphical parameters of the ensemble
simulation bounds if feasible.bounds = TRUE.
passed to fitted() and observed().
to overlay observed and modelled time series in one panel.
to include the input rainfall series in the plot.
Placeholder
plot type for rainfall, passed to panel.xyplot.
Placeholder
Placeholder
arguments to panel.qqmath.
passed to the arima method of
tsdiag.
the trellis functions return a trellis object.
hydromad.object, xyplot,
xyplot.ts, xyplot.list
data(Canning)
cannCal <- window(Canning, start = "1978-01-01", end = "1982-12-31")
mod <-
hydromad(cannCal,
sma = "cwi", tw = 162, f = 2, l = 300,
t_ref = 0, scale = 0.000284,
routing = "expuh", tau_s = 4.3, delay = 1, warmup = 200
)
xyplot(mod, with.P = TRUE)
c(
streamflow = xyplot(mod),
residuals = xyplot(residuals(mod, type = "h")),
layout = c(1, 2), y.same = TRUE
)
xyplot(residuals(mod)) +
latticeExtra::layer(panel.tskernel(..., width = 90, c = 2, col = 1)) +
latticeExtra::layer(panel.tskernel(..., width = 180, c = 2, col = 1, lwd = 2)) +
latticeExtra::layer(panel.tskernel(..., width = 360, c = 2, lwd = 2))
qqmath(mod,
scales = list(y = list(log = TRUE)), distribution = qnorm,
type = c("g", "l")
)